Trinity
Администратор
- Регистрация
- 10.07.21
- Сообщения
- 31.605
- Реакции
- 446.897
Последние темы автора:
[Наталия Кверквеладзе] [Институт Открытого поля] Расстановки выбора...
[Дарья Руденко] Wildberries из Беларуси. 7 поток. Тариф Я смотрю (2023)
[Марина Беркутова] [pearl_and_soul] Курс по созданию украшений "Создавай" (2024)
[Радим Мусабиров] Стань профи дизайнером. Тариф Минимальный (2024)
[Вероника Кромбергер] Думай, как миллионеры. Тариф Делаю Сам (2024)
[Дарья Руденко] Wildberries из Беларуси. 7 поток. Тариф Я смотрю (2023)
[Марина Беркутова] [pearl_and_soul] Курс по созданию украшений "Создавай" (2024)
[Радим Мусабиров] Стань профи дизайнером. Тариф Минимальный (2024)
[Вероника Кромбергер] Думай, как миллионеры. Тариф Делаю Сам (2024)
Автор: Karpov.Courses
Название: Продвинутая аналитика данных. Часть 6 (2023)
Описание:
Цель нашего курса — помочь опытным аналитикам расширить свои компетенции и задать правильное направление для дальнейшего развития в профессии. Полученный практический опыт позволит углубить знания в области продуктовой аналитики и научиться подбирать правильные инструменты для решения задач в самых неопределённых условиях и незнакомых отраслях.
ПРОГРАММА КУРСА ://
ПРОДУКТОВЫЙ ПОДХОД К СОЗДАНИЮ ОТЧЕТНОСТИ
Разработка дашборда — один из самых популярных запросов к аналитику со стороны команды. Часто это не решает проблему заказчика. А без понимания, зачем дашборд создан, он скорее всего не будет пользоваться спросом у заказчика.
Этой проблемы можно избежать, освоив продуктовый подход к созданию дашбордов через применение BI-системы. Так специалист научится предлагать быстрые альтернативные решения или создавать систему отчётности, отвечающую запросам бизнеса.
ОПИСАНИЕ МОДУЛЬНОГО ПРОЕКТА
Состоит из 2 частей — по итоговому заданию каждого блока (мини-проекты). Вам предстоит собрать проекта DashBoard Map и создать дашборд в рамках BI-системы под конкретную задачу, получив обратную связь от экспертов курса.
РАБОТА С КОМАНДОЙ DWH И ОБРАБОТКА БОЛЬШИХ ДАННЫХ
В корпорациях аналитику нужно коммуницировать со специалистами по аналитическим хранилищам (DWH). Для этого важно понимать, какие бывают хранилища, как с ними работать и как именно в компании отвечают на вопрос о правильном хранении данных.
А в небольших компаниях аналитики могут самостоятельно писать пайплайны обработки данных, поэтому необходимо знать самые популярные и оптимальные инструменты обработки Big Data.
ОПИСАНИЕ МОДУЛЬНОГО ПРОЕКТА
Есть единый финальный проект модуля, который предполагает использование всех изученных инструментов в модуле: с помощью spark вычитываем данные из S3 и CH, проводим преобразования (фильтрация, агрегация, джойны и тд), чтобы получить отчет для записи в CH.
ПРОДВИНУТЫЕ ЭКСПЕРИМЕНТЫ
Как оценить влияние изменений в компании на ключевые метрики бизнеса? С помощью экспериментов, конечно! Чем выше уровень аналитика, тем более сложные дизайны он умеет проектировать, а также ускорять их проведение, анализировать результаты и учитывать специфику конкретных метрик при выборе способов оценки изменений.
Middle аналитик умеет выходить за пределы применения рутинных A/B-тестов, отвечать на сложные вопросы заказчиков и растить значимость экспериментов для принятия решения компании.
ОПИСАНИЕ МОДУЛЬНОГО ПРОЕКТА
Оценка за модуль складывается на основе работы с ситуационными кейсами и мини-проектами на реальных данных по каждому блоку, где необходимо решить поставленную проблему или применить изученный инструмент. Блок 1 — кейс-тест, Блок 2 — 7 мини-проектов и кейс-тест, Блок 3 — 6 мини-проектов.
МАШИННОЕ ОБУЧЕНИЕ ДЛЯ РЕШЕНИЯ ЗАДАЧ АНАЛИТИКИ
Для решения нетривиальных задач аналитику, скорее всего, придётся выйти за рамки привычных инструментов, поэтому в этом модуле мы познакомимся с продвинутыми методами машинного обучения.
ЧТО НЕОБХОДИМО ДЛЯ КУРСА [?]
Название: Продвинутая аналитика данных. Часть 6 (2023)
Описание:
Цель нашего курса — помочь опытным аналитикам расширить свои компетенции и задать правильное направление для дальнейшего развития в профессии. Полученный практический опыт позволит углубить знания в области продуктовой аналитики и научиться подбирать правильные инструменты для решения задач в самых неопределённых условиях и незнакомых отраслях.
ПРОГРАММА КУРСА ://
ПРОДУКТОВЫЙ ПОДХОД К СОЗДАНИЮ ОТЧЕТНОСТИ
Разработка дашборда — один из самых популярных запросов к аналитику со стороны команды. Часто это не решает проблему заказчика. А без понимания, зачем дашборд создан, он скорее всего не будет пользоваться спросом у заказчика.
Этой проблемы можно избежать, освоив продуктовый подход к созданию дашбордов через применение BI-системы. Так специалист научится предлагать быстрые альтернативные решения или создавать систему отчётности, отвечающую запросам бизнеса.
ОПИСАНИЕ МОДУЛЬНОГО ПРОЕКТА
Состоит из 2 частей — по итоговому заданию каждого блока (мини-проекты). Вам предстоит собрать проекта DashBoard Map и создать дашборд в рамках BI-системы под конкретную задачу, получив обратную связь от экспертов курса.
РАБОТА С КОМАНДОЙ DWH И ОБРАБОТКА БОЛЬШИХ ДАННЫХ
В корпорациях аналитику нужно коммуницировать со специалистами по аналитическим хранилищам (DWH). Для этого важно понимать, какие бывают хранилища, как с ними работать и как именно в компании отвечают на вопрос о правильном хранении данных.
А в небольших компаниях аналитики могут самостоятельно писать пайплайны обработки данных, поэтому необходимо знать самые популярные и оптимальные инструменты обработки Big Data.
ОПИСАНИЕ МОДУЛЬНОГО ПРОЕКТА
Есть единый финальный проект модуля, который предполагает использование всех изученных инструментов в модуле: с помощью spark вычитываем данные из S3 и CH, проводим преобразования (фильтрация, агрегация, джойны и тд), чтобы получить отчет для записи в CH.
ПРОДВИНУТЫЕ ЭКСПЕРИМЕНТЫ
Как оценить влияние изменений в компании на ключевые метрики бизнеса? С помощью экспериментов, конечно! Чем выше уровень аналитика, тем более сложные дизайны он умеет проектировать, а также ускорять их проведение, анализировать результаты и учитывать специфику конкретных метрик при выборе способов оценки изменений.
Middle аналитик умеет выходить за пределы применения рутинных A/B-тестов, отвечать на сложные вопросы заказчиков и растить значимость экспериментов для принятия решения компании.
ОПИСАНИЕ МОДУЛЬНОГО ПРОЕКТА
Оценка за модуль складывается на основе работы с ситуационными кейсами и мини-проектами на реальных данных по каждому блоку, где необходимо решить поставленную проблему или применить изученный инструмент. Блок 1 — кейс-тест, Блок 2 — 7 мини-проектов и кейс-тест, Блок 3 — 6 мини-проектов.
МАШИННОЕ ОБУЧЕНИЕ ДЛЯ РЕШЕНИЯ ЗАДАЧ АНАЛИТИКИ
Для решения нетривиальных задач аналитику, скорее всего, придётся выйти за рамки привычных инструментов, поэтому в этом модуле мы познакомимся с продвинутыми методами машинного обучения.
ЧТО НЕОБХОДИМО ДЛЯ КУРСА [?]
- Знание базового синтаксиса Python (циклы, функции, условные операторы)
- Знание библиотек (pandas, numpy, scipy) на уровне импорта, экспорта данных, предобработки, EDA, базовая работа со случайными величинами
- Навыки визуализации в Python (Seaborn, matplotlib построение базовых визуализаций)
- Опыт анализа простых экспериментов (t-test или Манна-Уитни в Python)
- Написание запросов с JOIN, where, group by и агрегационными функциями
- Проверка гипотез
- Ошибки 1-ого и 2-ого рода
- Статистические критерии и p-value
- ЦПТ
- Корелляция
- Опыт работы с Tableau, Power BI, Superset или другими похожими инструментами
Скачать:Для просмотра ссылок необходимо выполнить Вход или Регистрация
Для просмотра скрытого содержимого вы должны войти или зарегистрироваться.